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Abstract

Driver process models play a central role in the testing, verification, and development of
automated and autonomous vehicle technologies. Prior models developed from control theory
and physics-based rules are limited in automated vehicle applications due to their restricted
behavioral repertoire. Data-driven machine learning models are more capable than rule-based
models but are limited by the need for large training datasets and their lack of interpretability,
i.e., an understandable link between input data and output behaviors. We propose a novel car
following modeling approach using active inference, which has comparable behavioral flexibility
to data-driven models while maintaining interpretability. We assessed the proposed model, the
Active Inference Driving Agent (AIDA), through a benchmark analysis against the rule-based
Intelligent Driver Model, and two neural network Behavior Cloning models. The models were
trained and tested on a real-world driving dataset using a consistent process. The testing
results showed that the AIDA predicted driving controls significantly better than the rule-based
Intelligent Driver Model and had similar accuracy to the data-driven neural network models in
three out of four evaluations. Subsequent interpretability analyses illustrated that the AIDA’s
learned distributions were consistent with driver behavior theory and that visualizations of the
distributions could be used to directly comprehend the model’s decision making process and
correct model errors attributable to limited training data. The results indicate that the AIDA
is a promising alternative to black-box data-driven models and suggest a need for further
research focused on modeling driving style and model training with more diverse datasets.

Keywords: Driver behavior modeling, Active Inference, Behavior Cloning, Intelligent Driver
Model, Car Following, Learning from Demonstration
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1 INTRODUCTION
The rapid development of automated and connected vehicle technologies has created a corre-
sponding demand for models of driver behavior that can be used to calibrate design parameters
[1, 2], evaluate technologies [3, 4], and refine real-time decision making [5]. To be effective in
these tasks, driver models must be flexible, generalizable, and interpretable. Model flexibility
is the ability of the model to mimic nuanced social behavior of human drivers [6]. Gener-
alizability is the ability of the model to extend to new environments with minimal modeler
intervention. Interpretability refers to both a clear connection between model mechanics and
predicted behavior and a grounding in human psychology [7]. These elements facilitate model
inspection and diagnostics which are essential for interpretable models [8]. Car following is an
important driving sub-task as it represents a large portion of current driving time and crashes
involving automated vehicles [9, 10]. Moreover, it requires a complex expression of social
behaviors through physical vehicle positioning [6], e.g., speeding up to prevent a vehicle from
merging. Therefore, it is important to develop flexible, generalizable, and interpretable car
following models for automated vehicles and future transportation systems.

Existing car following models can be partitioned into rule-based models and data-driven
models [11, 12]. Rule-based models generate acceleration behavior based on a function spec-
ified by the modeler. Typically, this function is grounded in known observations or driver
behavior theory [11]. For example, the Intelligent Driver Model (IDM) predicts driver acceler-
ation based on deviations from a desired speed and distance headway [13]. While rule-based
models have a clear connection between model mechanics and predicted behavior, they are
limited in their flexibility and generalizability. Because the rules in rule-based models are de-
signed to replicate driving behavior in specific contexts and depict driver characteristics with
small parameter sets, they are limited in the behavioral repertoire and in generalizing to sce-
narios outside of those governed by rules beyond their initial rule set. For example, research
has shown that rule-based models designed for car following do not generalize to emergency
scenarios and crashes [14]. Despite these limitations, rule-based models are still widely used
for automated vehicle analyses [15] and thus offer a valid benchmark for new models.

In contrast to rule-based models, data-driven models learn a function mapping observa-
tions or features to acceleration behaviors using an algorithm. Recent works have used neural
networks [16], hybrid neural network algorithms with physics constraints [17], reinforcement
learning [18], and adversarial imitation learning [19] to model car following behavior. These
approaches have shown considerable flexibility in replicating human behavior, however, data-
driven models still struggle to reproduce well-known traffic phenomena such as stop-and-go
oscillation and their generalizability is constrained by the chosen machine learning technique
[16, 20]. Furthermore, the complexity of existing data-driven models prohibits interpretability
both in the connection between input and output and in their grounding in human psychology.
Despite these shortcomings, data-driven models are more generalizable to complex scenar-
ios which are difficult for manual model specification. One important class of data-driven
models is Behavior Cloning (BC) known for their simplicity and general effectiveness [21–23].
Neural network-based BC models have been widely adopted for developing and evaluating
automated vehicle algorithms and are a common benchmark for evaluating novel data-driven
models [24, 25].
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The relative strengths of rule-based and data-driven approaches suggest that there
is a role for model structure (to aid in interpretability) — especially structure grounded in
psychological theory [7] — and learning from data (to aid in flexibility) in car following model
development. The incorporation of these two concepts requires a shift to contemporary the-
ories of human cognition. One relevant theory is active inference [26, 27] — a framework
developed from Bayesian principles of cognition [28, 29]. The central ideas of active inference
are that 1) humans have internal probabilistic generative models of the environment and that
2) humans leverage their model of the environment to make inferences about action courses
that reduce surprise in terms of both distance from their desired states of the environment
and uncertainty [26, 27]. Importantly, these principles have been translated into a quantitative
framework for modeling human behavior and cognition [27, 30]. The quantitative framework
includes an explicit representation of agent belief dynamics to facilitate agent decision making
and action selection in response to observed perceptual signals. Due to this structure, the
model is fundamentally interpretable (i.e., actions can be traced back to beliefs and observa-
tions at a given time). On the other hand, the increased complexity and probabilistic nature
of the model compared to rule-based frameworks also increase it’s flexibility and potentially
it’s generalizability. Recently, the active inference framework has been extended to driving to
depict driving behavior during emergency scenarios with some success [31, 32], however, the
application to broader scenarios has been limited.

Our goal in this article is to introduce the Active Inference Driving Agent (AIDA),
evaluate its flexibility and generalizability relative to rule-based and data-driven benchmarks,
and illustrate the interpretability of the model and the resulting insights it provides into car
following behavior.

2 MATERIALS AND METHODS
In this section, we introduce a formulation of the benchmarks — IDM and Behavior Cloning
— then describe our AIDA formulation. We then describe the dataset used for model fitting
and the model comparison approach. To simplify notation, we adopt a unifying view of car
following models as longitudinal driving control policies which map input signals observed
by drivers to a control signal, i.e., the instantaneous longitudinal acceleration. We denote
the driver observations (or features in machine learning terminology) at discrete time step
t by ot and the control signal by at . Using this nomenclature, the most generic class of
driver control policies can be described as a probabilistic mapping from the entire history of
inputs and controls, denoted by ht = {o1:t ,a1:t−1} to the next control signal, i.e., π(at |ht).
However, the control policy may only depend on the most recent observation as π(at |ot). The
definition of the control policy is the most significant element that differentiates the IDM,
Behavior Cloning, and AIDA. These differences are illustrated in the computation graphs in
Figure 1 and further described in the subsequent sections.

2.1 Intelligent Driver Model
The IDM [33] implements a control policy based on drivers’ instantaneous observation of their
own vehicle’s speed v , relative speed to the lead vehicle ∆v , and distance headway to the lead
vehicle d , i.e., π(at |ot = {vt ,∆vt ,dt}). At each time step, the IDM computes a longitudinal
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FIGURE 1: Computation graphs for (a) IDM, (b) AIDA, and (c) neural network BC models. o =

instantaneous observation, a = control action, h = complete interaction history, d̃ = desired distance
headway, b = instantaneous belief, G = expected free energy, NN = neural network.

acceleration to regulate the driver’s vehicle towards a desired speed ṽ and desired distance
headway d̃ using the following control rule:

at = amax

1−
(vt
ṽ

)4
−

(
d̃

dt

)2 (1)

where the desired distance headway is defined as:

d̃ = d0+ vtτ −
vt∆vt

2
√
amaxb

(2)

The IDM has the following parameters: amax the maximum acceleration rate which
can be implemented by the driver, d0 the minimum allowable distance headway, τ the desired
headway time, and b the maximum deceleration rate. While these parameters can be set
manually by human designers, they usually depend on the road condition and vary with indi-
vidual driver characteristics, e.g., the desired velocity and minimum distance headway. Thus,
various methods have been proposed to calibrate model parameters from traffic data [34, 35].

A significant limitation of the IDM is that it cannot express certain types of behavior
as a result of the control rule defined in (1) and (2). For example, it cannot express behavior
due to uncertainty about the lead vehicle behavior and surrounding traffic and is limited
to modeling behavior in non-conflict scenarios [14]. Incorporation of such behavior requires
significant intervention from the model designers in adapting the control rule, e.g, modifying
(1) and (2) to depend on additional inputs or “memory" mechanisms [13].

2.2 Behavior Cloning
BC refers to methods that train neural networks to learn policies from datasets of human
car following behavior. The dataset, denoted with D, is usually organized in the form of
observation-action trajectories, i.e., D = {o(i)1:T ,a

(i)
1:T }

N
i=1, where N is the total number of

trajectories and T is the length of each trajectory. The neural network parameterized policies
depend on either the entire history ht or the most recent observation ot . Let us denote the
policy parameters with θ, BC trains policies to maximize the expected log likelihood of the
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dataset trajectories:

max
θ
L(θ) = Eo1:t ,a1:t∼D

[
T

∑
t=1

logπθ(at |ht)

]
(3)

BC is simple to implement and more computationally efficient than comparative data-driven
machine learning methods like reinforcement learning and online imitation learning. BC also
does not require a high fidelity traffic simulation environment for training, which is necessary
for reinforcement learning and online imitation learning. In contrast to rule-based policies,
BC policies are more flexible and can express a much larger class of behaviors.

However, BC as a representative offline learning method has known disadvantages of
being sensitive to the quantity and quality of training data and input features. The covariate-
shift between the training dataset and the testing environment and neural network models’
difficulty of extrapolating learned mechanisms to unseen inputs often cause BC models to
overfit to the training dataset while producing poor control behavior during closed-loop testing
(defined in section 2.8.2) [20, 36]. Furthermore, several studies have found that BC can be
highly sensitive to input features [16, 19, 37]. Specifically, when a driver’s previous control
actions are used as input features to the trained policy, it is likely that the policy merely
repeats those controls actions in closed-loop testing. This has been interpreted as a form of
learning spurious correlations or causal confusion in machine learning, since driver controls at
adjacent time steps are usually so similar that predicting previous controls can quickly minimize
training error [37]. Because BC does not impose any structure on the policy, examining the
failure modes of BC models is as challenging as examining any other black-box neural network
models.

Despite these shortcomings, BC, or variations of it, is a widely studied approach in
developing automated vehicle algorithms and building simulated agents and environments for
training them [24, 25]. It can produce high quality simulated behavior in practice when the
training dataset is large and diverse, appropriate features are selected, and the neural network
model is large and expressive enough [16, 22, 23] and thus it represents a valid data-driven
modeling benchmark.

2.3 Active Inference Driving Agent
An active inference agent is defined by its internal generative model, which we implemented
as a Partially Observable Markov Decision Process (POMDP). A POMDP describes a dy-
namic process in which the state of the environment st ∈ S evolves with driver actions,
at ∈A, according to a probability distribution, P (st+1|st ,at), and generates observation sig-
nal, ot+1 ∈ O, according to, P (ot+1|st+1). In this work, we assume the observation signals
are multivariate continuous variables and the states are discrete to represent probabilistic cat-
egorizations of the observation space (i.e., categorical perception [38]). At every time step,
the active inference agent first makes inference about the hidden state of the environment
upon receiving observations using Bayes’ rule:

bt(st) =
P (ot |st)P (st |bt−1,at−1)

∑st P (ot |st)P (st |bt−1,at−1)
(4)

where bt(st) = P (st |ht) denotes the agent’s belief about the environment state given the
observation-action history ht and P (st |bt−1,at−1) = ∑st−1 P (st |st−1,at−1)b(st−1) is the prior
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predictive distribution based on the previous belief.
The active inference agent then selects control actions to minimize a criterion known

as the (cumulative) expected free energy (EFE) [39]:

G∗(bt) = min
π
E

[
t+H

∑
t

EFE(bt ,at) + logπ(at |bt)

]
(5)

where H ≤∞ is a finite planning horizon. The EFE is defined as:
EFE(bt ,at), E[DKL

(
bt+1||P̃

)
] +E[H(ot+1)] (6)

where P̃ := P̃ (st+1) defines the agent’s preferred state distribution, DKL(·||·) denotes the
Kullback-Leibler divergence — measuring the discrepancy between the current belief and the
preferred state distribution — and H(·) denotes Shannon entropy — measuring uncertainty
about observations. These terms represent goal-seeking and information-seeking (epistemic)
behavior respectively [40]. The first expectation in the EFE is taken with respect to:
P (ot+1|bt ,at) = ∑

st+1

P (ot+1|st+1)P (st+1|bt ,at) (7)

and the second expectation in the EFE is taken with respect to P (st+1|bt ,at).
Let G∗(bt ,at) be defined as:

G∗(bt ,at) := EFE(bt ,at) + logπ(at |bt) +

∫
P (ot+1|bt ,at)G∗(bt+1)dot+1 (8)

Then the optimal policy has a closed-form expression [41]:

π(at |bt) =
e−G

∗(bt ,at)

∑ã∈A e−G
∗(bt ,ã)

(9)

Active inference has two important differences from the traditional notion of POMDP
in operations research and reinforcement learning. First, both the generative model and the
control objective are internal to the agent, meaning they can differ in substantial ways from
the true environment generative model or a canonical notion of desired behavior, e.g., a
"good driver" should always be centered in the lane. This has important implications as
many human driving behaviors can be explained as inference in subjective or sub-optimal
models [42]. Second, active inference makes an explicit distinction between pragmatic and
epistemic behavior in its policy objective according to the first and second terms in (6). This
distinction supports adaptive behavior in unknown and uncertain environments [40, 43], e.g.,
traffic environments.

2.4 Dataset
We performed our analysis of the IDM, BC, and AIDA using the INTERACTION dataset
[44], a publicly available driving dataset recorded using drones on fixed road segments in
the USA, Germany, and China. The dataset provides a lanelet2 format map [45] and a set
of time-indexed trajectories of the positions, velocities, and headings of each vehicle in the
scene in the map’s coordinate system at a sampling frequency of 10 Hz, and the vehicle’s
length and width for each road segment. The dataset contains a variety of traffic behaviors,
including car following, free-flow traffic, and merges.

Due to our emphasis on car following behavior, we selected a subset of the data to
include car following data from a two-way, seven-lane highway segment in China with a total
distance of 175 m. We focused on vehicles in the middle two west-bound lanes shown in
Figure 2. We further filtered the remaining vehicles according to two criteria: 1) there was
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FIGURE 2: Map of the roadway included in data collection. The westbound lanes (blue) were used
for training and the eastbound lanes (orange) were used for testing.

a lead vehicle with a maximum distance headway of 60 m, and 2) the ego vehicle was not
performing a merge or lane change. We identified merging and lane change behavior using an
automated logistic regression-based approach and validated the classifications with a manual
review of a subset of trajectories. We also removed all trajectories with length shorter than
5 seconds, leaving a total of 1,254 trajectories with an average length of 14 seconds.

2.4.1 Feature Computation
The input features to the IDM are defined in (1) and (2). For BC and the AIDA, we used d
and ∆v but excluded v to prevent learning spurious correlations to ego speed or acceleration
from past time steps reported in prior studies [16, 22, 37]. Furthermore, we included an
additional feature τ−1 in BC and AIDA defined as the rate of change of the visual angle of
the lead vehicle from the ego driver’s seat position divided by the angle itself. τ−1 can be
considered as a perceptual-control analog of inverse time-to-collision, a feature commonly
used in driver modeling [19, 46, 47], with the difference of incorporating the width of the
lead vehicle into feature computation and using quantities that can actually be observed by
the driver. This is consistent with recent findings on the impact of optical expansion of the
lead vehicle’s image on driver longitudinal control behavior [48]. Furthermore, the inclusion
of this feature puts the information contained in the inputs to BC and the AIDA on a similar
level to the IDM, as the IDM implicitly accounts for time-to-collision in its desired distance
headway computation in (2).

We computed all features in the Frenet frame (i.e., lane-centric coordinates [49]),
by first transforming vehicle positions, velocities, and headings using the current lane center
line as the reference path and then computing the features from the transformed positions
and velocities. We obtained the drivers’ instantaneous longitudinal control inputs (i.e., ac-
celerations) from the dataset by differentiating the Frenet frame longitudinal velocities. For
BC and the AIDA, we discretized the continuous control inputs into discrete actions using
a Gaussian mixture model of 15 Gaussian components with mean and variance parameters
chosen using the Bayesian Information Criteria [50].
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2.5 Model implementation
In this section, we describe our approach for parameterizing the IDM, BC, and the AIDA.

IDM. Following [51], we parameterized the IDM by treating the IDM policy as a
conditional Gaussian distribution: π(at |ot = {vt ,∆vt ,dt}) =N (at |µt ,σ2) with mean action
µt and variance σ2. The mean action µt is computed from the IDM rule defined in (1) and
(2) by making the desired speed ṽ , minimum distance headway d0, desired headway time τ ,
maximum acceleration rate amax and maximum deceleration rate b adjustable parameters.
The action variance σ2 is assumed to be independent of the input features and also estimated
from data.

BC.We implemented the BC model with two types of neural network policies: standard
Multi-Layer Perceptron (MLP) networks and recurrent neural networks (RNN) following [19].
The MLP network takes as input the observation vector (normalized by training set statistics)
and outputs a probability distribution over the discrete control actions. The RNN addresses
the possibility that driver behavior may be influenced by the full observation history rather
than just the most recent observation. For the RNN, we combined a Gated Recurrent Unit
(GRU) network [52] with a MLP network, where the GRU network compresses the observation
history into a fixed length vector, which is then transformed into the action distribution by
the MLP network.

AIDA. We modeled the discrete state transition probabilities P (st+1|st ,at) and the
desired state distribution P̃ (st) of the AIDA using categorical distributions parameterized by
their logits. We parameterized the observation distributions P (ot |st) using Normalizing Flow,
a flexible class of neural network-based density estimator [53, 54]. This provides the AIDA
with adequate flexibility in modeling complex and nonlinear observation sequences and asso-
ciating observed actions with agent beliefs. Normalizing Flow uses invertible neural networks
to transform simple distributions, e.g., Gaussian distributions, into complex and correlated
distributions while maintaining the tractability of likelihood evaluation and sampling. In this
work, we used a single, shared Inverse Autoregressive Flow [55] to transform a set of con-
ditional Gaussians with mean vector µ(st) and covariance matrix Σ(st). We modeled a
distribution over the agent’s planning horizon using a Poisson rate parameter and used the
QMDP method [56, 57] as a closed-form approximation of the cumulative expected free en-
ergy in (8). We approximately computed the entropy of the state-conditioned observation
distributions required in the EFE calculation using the entropy of the Normalizing Flow base
distributions. In subsequent sections, we refer to the transition and observation parame-
ters with θ1, the desired state distribution and planning horizon parameters with θ2, and the
combined parameters with θ = {θ1,θ2}.

We provide additional implementation details in Appendix A. Our software implemen-
tation is publicly available at [58].

2.6 Parameter Estimation
We estimated the parameters of the IDM, BC, and AIDA by maximizing the expected log
likelihood of driver control inputs from the dataset under the corresponding control policy,
i.e., (3). This procedure for the AIDA differs slightly from the IDM and BC by requiring a
nested step. Between each parameter update in the nested procedure, we first computed
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the sequence of beliefs given the observation-action history using (4) and the optimal belief-
action policy using (9). We then evaluated the log likelihood as a function of the computed
beliefs:

max
θ
Eo1:T ,a1:T∼D

[
T−1

∑
t=1

logπθ(at |bt,θ1)

]
s.t. πθ(at |bt) =

e−G
∗
t,θ(bt ,at)

∑ãt∈A e
−G∗t,θ(bt ,ãt)

(10)

While (10) allows us to learn task-relevant beliefs in active inference agents as it
depends on both θ1 and θ2, the parameters are fundamentally unidentifiable since there are
potentially infinite sets of θ with the same likelihood [59–61]. This is because, for example, the
estimation algorithm cannot differentiate between drivers who desire small distance headway
and drivers who believe the distance headway will increase to desired levels in subsequent
time steps. A possible consequence of this is learning an environment model that deviates
significantly from the reality, which leads to a large number of crash or inaction as a result
of the agent not being able to recognize the actual environment state [62].

In order to constrain the hypothesis space and avoid configurations of θ that are
incompatible with real-world constraints, we designed a data-driven prior distribution P (θ)

encoding likely configurations of θ. Specifically, the prior is defined as P (θ) = P (θ1)P (θ2|θ1),
where:

P (θ1)∝ exp

(
λEo1:T ,a1:T∼D

[
T

∑
t=1

logPθ1(ot |ht−1,at−1)

])
(11)

with hyperparameter λ controlling how much the prior distribution prefers model accuracy,
measured by expected log likelihood of observations. We let P (θ2|θ1) be a uniform distribu-
tion. In our experiments, we only compute the Maximum A posteriori (MAP) estimate of the
Bayesian model by converting the prior into the following loss function added to the objective
in (10):

L(θ1) = λEo1:T ,a1:T∼D

[
T

∑
t=1

logPθ1(ot |ht−1,at−1)

]
(12)

To prevent learning unreasonably large observation variance as a result of the observation
entropy term in (6), another symptom previously reported in [62], we applied a penalty on
the l2 norm of the observation covariance parameters.

Using these prior loss functions, the AIDA MAP estimate can be written as:

θMAP = argmax
θ

T

∑
t=1

Eo1:T ,a1:T∼D
[
logπθ(at |bt,θ1) +λ1 logPθ1(ot |ht−1,at−1)

]
+λ2∑

s

||Σθ1(s)||2

(13)

2.7 Model selection
We trained each model with 15 random seeds controlling model parameter initialization and
dataset mini-batch iteration orders. To select the hyperparameters for the AIDA, we first set
λ2 = 0.1 since it’s sufficient to mitigate overly large covariances. We then trained the model
for λ1 = [0.2,1,4] and selected λ1 = 1 as it best trades off environment model accuracy and
agent behavior predictive performance (with criteria described in the next section).
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2.8 Model Evaluation and Comparison
We evaluated and compared our models’ ability to generate behavior similar to the human
drivers in the dataset using both open-loop offline predictions and closed-loop online simu-
lations. In both cases, we evaluated the models on two different held-out testing datasets.
The first dataset includes vehicles from the same lanes as the training dataset. This dataset
tests whether the models can generalize to unseen vehicles in the same traffic condition. We
obtained this dataset by dividing all selected trajectories in the westbound lanes using a 7-3
train-test ratio. The second dataset includes vehicles from the top two eastbound lanes in
Figure 2. This dataset tests whether the models can generalize to unseen vehicles in novel
traffic conditions, since the traffic in the eastbound lanes have on average higher speed and
less density. We refer to these two datasets as same-lane and new-lane, respectively. We
randomly selected 100 trajectories with a minimum length of 10 seconds from the same-lane
dataset and 75 trajectories with a minimum length of 5 seconds from the new-lane dataset
for testing.

2.8.1 Offline Evaluation
The goal of the offline evaluation was to assess each model’s ability to predict a driver’s next
action based on the observation-action history recorded in the held-out testing dataset. This
task evaluates the models’ ability to be used as a short-horizon predictor of other vehicles’
behavior in an on-board trajectory planner [63]. We measured a model’s predictive accuracy
using Mean Absolute Error (MAE) of the predicted control inputs (unit=m/s2) on the held-
out testing datasets. For the IDM, we calculated the predicted control inputs by sampling
from the Gaussian policy. For BC and the AIDA, we first sampled a discrete action from
the action distribution predicted by the models and then sampled from the corresponding
Gaussian component in the Gaussian mixture model used to perform action discretization.

2.8.2 Online Evaluation
Rather than predicting instantaneous actions, the goal of the online evaluation was to assess
the models’ ability to generate trajectories similar to human drivers such that they can be
used as simulated agents in automated vehicle training and testing environments [24]. This
is fundamentally different from offline predictions because the models need to choose actions
based on observation-action history generated by its own actions rather than those stored
in the fixed, offline dataset. This can introduce significant covariate shift [20] sometimes
resulting in situations outside of the model’s training data, which can lead to poor action
selection.

We built a single-agent simulator where the ego vehicle’s longitudinal acceleration
is controlled by the trained models and its lateral acceleration is controlled by a feedback
controller for lane-centering. The lead vehicle simply plays back the trajectory recorded in
the dataset. Other vehicles do not have any effect on the ego vehicle, given our observation
space does not contain other vehicle related features.

Following [25], We measured the similarity between the generated trajectories and the
true trajectories using the following metrics:

1. Average deviation error (ADE; unit=m): deviation of the Frenet Frame longitudinal
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position from the dataset averaged over all time steps in the trajectory.
2. Lead vehicle collision rate (LVCR; unit=%): percentage of testing trajectories con-

taining collision events with the lead vehicle. A collision is defined as an overlap
between the ego and lead vehicles’ bounding boxes.

2.8.3 Statistical Evaluation
Following the recommendations in [64, 65] for evaluating learned control policies, we repre-
sented the central tendency of a model’s offline prediction and online control performance
using the interquartile mean (IQM) of the offline MAEs and online ADEs. Note however for
collision rate, we compute the regular mean instead of IQM to account for the collision rate
lower bound of 0. The IQMs are computed by 1) ranking all tested trajectories by their re-
spective performance metrics and 2) computing the mean of the performance metrics ranked
in the middle 50%. To compare the central performance difference between the AIDA and
baseline models, we performed two-sided Welch’s t-tests with 5 percent rejection level on the
MAE-IQM and ADE-IQM values computed from different random seeds with the assumption
that the performance distributions between two models may have different variances [64, 65].

3 RESULTS AND DISCUSSION
3.1 Offline Performance Comparison
Figure 3 shows the offline evaluation results for each model with the model type on the x-
axis and the IQMs of acceleration prediction MAEs averaged across the testing dataset on
the y-axis. The color of the points in the figure represents the testing condition and each
point corresponds to a random seed’s result. The points are randomly distributed around
each x-axis label for clarity. Dispersion on the y-axis indicates sensitivity in the model to
initial training conditions. The plot illustrates that the AIDA had the lowest MAE-IQM in
the same-lane tests, followed by BC-RNN, BC-MLP, and IDM. The corresponding pairwise
Welch’s t-test results in Table 1 show that these differences are significant. In the new-lane
tests, both the AIDA and neural network BC models significantly outperformed IDM. The
AIDA performance has higher variance than BC models, however the difference in the central
tendency was not significant. These results show that in the current car following setting, the
AIDA and BC generalized better to the new-lane scenario than the IDM, mostly likely due to
the IDM rules being unable to adapt to different traffic speed and density than the training
dataset. The stronger predictive performance in the AIDA and BC-RNN in the same-lane
data can be attributed to the fact that driver acceleration actions depend on the full history
of past observations rather than just the most recent observation, which can be modeled
by the recurrent structure of the AIDA and BC-RNN. The figure also shows that for the
same-lane tests, the AIDA had more variance across the random seeds compared to other
models, suggesting that it is the most sensitive to local optima in the training process.

3.2 Online Performance Comparison
Figure 4 shows the IQM of each model’s ADEs from data set trajectories in the online
evaluations using the same format as the offline evaluation results. In the same-lane testing
condition, all models had an ADE-IQM values between 1.8 m and 2.8 m, which is less than
the length of a standard sedan (≈ 4.8 m; [66]). Among all models, BC-MLP achieved the
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FIGURE 3: Offline evaluation MAE-IQM. Each point corresponds to a random seed used to initialize
model training and its color corresponds to the testing condition of either same-lane or new-lane.

TABLE 1: Two-sided Welch’s t-test results of offline MAE-IQM against baseline models. Asterisks
indicate statistical significance with α= 0.05.

Baseline Comparison t(df=14) p-value
IDM same-lane t=37.58 p<0.001*
BC-MLP same-lane t=32.38 p<0.001*
BC-RNN same-lane t=17.31 p<0.001*
IDM new-lane t=33.21 p<0.001*
BC-MLP new-lane t=0.35 p=0.73
BC-RNN new-lane t=-0.12 p=0.90

lowest ADE values for both the same-lane and new-lane conditions, followed by the AIDA,
IDM, and BC-RNN. Furthermore, both the AIDA and BC models achieved lower ADE-IQM
in the new lane settings compared to the same-lane setting, however the IDM achieved
higher ADE-IQM in the new-lane setting. The Welch’s t-test results in Table 2 show that
AIDA’s online test performances are significantly different from all baseline models in both
the same-lane and new-lane settings (P ≤ 0.01). These findings confirm that the AIDA
and BC models generalized better to the new-lane setting than the IDM and suggest that
the AIDA’s average online trajectory-matching ability is significantly better than IDM and
BC-RNN, although BC-MLP is significantly better than the AIDA.

Figure 5 shows the lead vehicle collision rates for each random seed and model using the
same format as Figure 4. The figure illustrates that in the same-lane condition, the random
seeds for BC-MLP, BC-RNN, and the AIDA had more collisions than the IDM (0% collision
rate across all seeds). In particular, BC-RNN and the AIDA had substantial differences across
random seeds compared to the other models. However, the minimum collision rates for BC-
MLP, BC-RNN, and the AIDA were consistent (less than or equal to 1%). In the new-lane
condition, the collision rate was 0% for all four models. The higher collision rates in the
same-lane data are likely due to the traffic density and complexity, which were higher in the
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FIGURE 4: Online evaluation ADE-IQM. Each point corresponds to a random seed used to initialize
model training and its color corresponds to the testing condition of either same-lane or new-lane.

TABLE 2: Two-sided Welch’s t-test results of online ADE-IQM against baseline models. Asterisks
indicate statistical significance with α= 0.05.

Baseline Comparison t(df=14) p-value
IDM same-lane t=3.05 p<0.01*
BC-MLP same-lane t=-5.46 p<0.001*
BC-RNN same-lane t=8.73 p<0.001*
IDM new-lane t=58.18 p<0.001*
BC-MLP new-lane t=-3.77 p<0.001*
BC-RNN new-lane t = 6.87 p<0.001*

same-lane condition compared to the new-lane condition.

FIGURE 5: Lead vehicle collision rate in online evaluation. Each point corresponds to a random seed
used to initialize model training and its color corresponds to the testing condition of either same-lane
or new-lane.
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3.3 AIDA Interpretability Analysis
The previous sections suggest that the AIDA can capture driver car following behavior sig-
nificantly better than the IDM and comparably to data-driven BC models. However, the
findings have yet addressed the interpretability of the AIDA. While there is no established
metric for model interpretability, Räukur et. al. [8] recommend assessments based on the
easiness of comprehending the connection between model input and output and tracing model
predictive errors to internal model dynamics. Given that the AIDA’s decisions are emitted
from a two-step process, i.e., (1) forming beliefs about the environment and (2) selecting
control actions that minimize free energy, the model’s success at the car following task de-
pends on the two sub-processes both independently and jointly. We examined the AIDA’s
learned input-output mechanism by visualizing its independent components (i.e., the observa-
tion, transition, and preference distributions) and verified them against expectations guided
by driving theory [43, 67, 68]. We then examined the joint belief-action process by replaying
the AIDA beliefs and diagnosing its predictions of recorded human drivers in the offline setting
and its own decisions in the online setting.

3.3.1 Independent Component Interpretability
Initial insights into the model input and output connections can be gained by visualizing
the AIDA components, specifically its policy (Figure 6b), observation distribution (shown in
Figure 6c), and preference distribution (Figure 6d). These figures show 200 random samples
from each state of the AIDA’s state-conditioned observation distribution, P (o|s), plotted on
each pair of observation modalities. Color is used to highlight relevant quantities of interest.
We further used samples drawn from the INTERACTION dataset, plotted in Figure 6a and
colored by the recorded accelerations, to facilitate interpreting the the AIDA samples.

Figure 6b illustrates the observation samples by the model’s chosen control actions.
The top chart shows the samples using distance headway (d ; x-axis) by relative velocity to the
lead vehicle (∆v ; y-axis), the middle chart shows distance headway by τ−1, and the bottom
chart shows relative velocity by τ−1. The shape of the sampled points matches the contour of
the empirical dataset (Figure 6a), particularly in the middle and bottom visualizations, which
suggests that the model’s learned observation model aligns with the recorded observations in
the dataset. Darker green and red colors correspond to larger acceleration and deceleration
magnitudes, respectively, and light yellow color corresponds to near zero control inputs. The
color gradient at different regions in Figure 6b is consistent with that of the empirical dataset
shown in Figure 6a. This shows that the model learned a similar observation to action
mapping as the empirical dataset. The mapping can be interpreted as the tendency to
choose negative accelerations when the relative speed and τ−1 are negative and the distance
headway is small, and positive accelerations in the opposite case. Furthermore, the sensitivity
of the red and green color gradients with respect to distance headway shows that the model
tends to accelerate whenever there is positive relative velocity, regardless of the distance
headway. However, it tends to input smaller deceleration at large distance headway for the
same level of relative speed.

Figure 6c shows the observation samples colored by their associated discrete states.
The juxtaposition of color clusters in the top panel shows that the AIDA learned to categorize
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(a) (b) (c) (d)

FIGURE 6: Visualizations of the dataset and AIDA model components. In panel (a), we plotted
observations sampled from the dataset. In panels (b), (c), and (d) we sampled 200 points from the
AIDA’s state conditioned observation distributions and plotted the sampled points for each pair of
observation feature combinations. The points in each panel are colored by: (a) accelerations from the
dataset, (b) the AIDA’s predicted accelerations upon observing the sampled signals from a uniform
prior belief, (c) state assignments (d) log probabilities of the preference distribution.

observations by relative speed and distance headway and its categorization for relative speed is
more fine-grained at small distance headways and spans a larger range of values. The middle
and bottom panels show that its categorization of relative speed is highly correlated with τ−1

as the ordering of colors along the y-axis is approximately the same as in the top panel. The
middle and bottom panels show that the AIDA’s categorization of high τ1 magnitude states
(blue and cyan clusters) have larger span than that of low τ−1 magnitude states. These
patterns further establish that the AIDA has learned a representation of the environment
consistent with the dataset. At the same time, it can be interpreted as a form of satisficing
in that the model represents low urgency large distance headway states with less granularity
[69].

Figure 6d shows the observation samples by the log of its preference probability,
P̃ (o) = ∑s P̃ (s)P (o|s), where higher preference probability (i.e., desirability) corresponds
to brighter colors (e.g., yellow) and lower desirability corresponds to darker colors (e.g., pur-
ple). The figure shows that the highest preference probability corresponds to observations of
zero τ−1, zero relative velocity, and a distance headway of 18 m (see the center region of
the middle chart, and the yellow circle at the left-center of the top chart). This aligns with
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the task-difficulty homeostasis hypothesis that drivers prefer states in which the crash risk is
manageable [67] and not increasing. It is also consistent with the observed driver behavior
in Figure 6a where drivers tend to maintain low accelerations (light yellow points) within the
same regions.

Overall, these results show a clear mapping between the AIDA’s perceptual (Figure 6c)
and control (Figure 6d and 6b) behavior that is both consistent with the observed data and
straightforwardly illustrated using samples from the fitted model distributions. This mapping
facilitates predictions of the AIDA’s reaction to observations without querying the model,
which is an important dimension of interpretability in real world model verification [8].

3.3.2 Joint Model Interpretability
While the previous analysis illustrates the interpretability of individual model components,
the interaction between components introduces additional challenges for overall model in-
terpretability. To address this, we analyzed two same-lane scenarios where the AIDA made
sub-optimal decisions in the model testing phase — one from the offline evaluations where
the AIDA’s predictions had the largest MAE and one from the online evaluations where the
AIDA generated a rear-end collision with the lead vehicle. We first visualized the AIDA’s be-
liefs (computed by (4)) and policies (computed by (9)) as the model generated actions and
then used those visualizations to demonstrate how the transparent input-output mechanism
in the AIDA can be used to mitigate the sub-optimal decisions.

The chosen offline evaluation trajectory is visualized in Figure 7. The left column
charts show the data of the three observation features over time. The right column charts
show the time-varying ground truth action probabilities over time (top), action probabilities
predicted by the AIDA over time (middle), and environment state probabilities P (s|h) in-
ferred by the AIDA over time (bottom). In the right-middle and right-bottom charts, the
action and belief state indices are sorted by the mean acceleration and τ−1 value of each
state to facilitate alignment with the left and top-right charts. We labeled the actions by
the corresponding means but not the belief states because they represent multi-dimensional
observation categorizations (see Figure 6c). The bottom-right chart shows that the inferred
belief patterns closely followed the observed relative speed and τ−1 in the left-middle and
left-bottom charts with high precision, i.e., close to probability of 1. The predicted action
probabilities in the right-middle chart followed the trend of the ground truth actions, how-
ever, they exhibited substantially higher uncertainty at most time steps and multi-modality
at t = 1 s and t = 12 s, where one of the predicted modes coincided with the true actions.
Given the inferred beliefs were precise, uncertain and multi-model actions were likely caused
by inter-driver variability in the dataset, where drivers experienced similar belief states but
selected different actions. Alternatively, this uncertainty may be caused by drivers having
highly different beliefs after experiencing similar observations, where a simple policy would
be sufficient to predict their actions. In either case, the error in AIDA predictions can be
attributed to inconsistency between the belief trajectories and action predictions.

The chosen online evaluation trajectory which resulted in a rear-end collision with the
lead vehicle is shown in Figure 8 plotted using the same format as Figure 7. The duration
of the crash event is highlighted by the red square in the bottom-left chart, where the sign
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FIGURE 7: Visualizations of a same-lane offline evaluation trajectory where the AIDA had the highest
prediction MAE. The charts in the left column show distance headway, relative speed, and τ−1 signals
observed by the model over time. The binary heat maps in the right column show the ground truth
action probabilities (top), action probabilities predicted by the AIDA (middle), and the corresponding
belief states (bottom) over time (x-axis), where darker colors correspond to higher probabilities. The
belief state and action indices are sorted by the mean τ−1 and acceleration value of each state,
respectively.

of τ−1 values instantly inverted when overlapping bounding boxes between the ego and lead
vehicle first occurred and eventually ended. The AIDA initially made the correct and precise
decision of braking, however, its predictions for high magnitude actions became substantially
less precise prior to the collision (t > 1 s; see right middle chart). This led to the model
failing to stop fully before colliding with the lead vehicle. The belief pattern shows that
the AIDA tracked the initial decreasing values of relative speed and τ−1 but did not further
respond to increasing magnitude of τ−1 3 seconds prior to the crash (starting at t = 1.6 s).
These findings show that the model exhibited the correct behavior of being "shocked" by
out-of-sample near-crash observations, however, the learned categorical belief representation
was not able to extrapolate beyond the data from the crash-free INTERACTION dataset.

The analysis of the near-crash AIDA beliefs suggests that editing the AIDA’s learned
environment dynamics model (i.e., the transition and observation distributions) to properly
recognize near-crash observation signals can likely avoid the current crash. To demonstrate
the utility of being able to make precise model-editing decision based on the interpretabil-
ity analysis, we tested a modification of the AIDA by replacing its learned dynamics model
with a physics-based dynamics model assuming constant lead vehicle velocity in the model
predictions. Although the physics-based dynamics model does not capture the stochastic-
ity in the lead vehicle behavior, it is sufficient for mitigating the current crash given its
ability to accurately predict near-crash observations. We evaluated this new model in the
same online testing scenarios as the AIDA, where the control actions were generated from
a model-predictive controller (MPC [70]) using the AIDA’s preference distribution as the re-
ward function (for detailed implementation seed Appendix A.3). The AIDA-MPC mitigated
all crashes when deployed in the same scenarios as the AIDA as our analysis predicted. How-
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FIGURE 8: Visualizations of a same-lane online evaluation trajectory where the AIDA generated a
rear-end collision with the lead vehicle. This figure shares the same format as Figure 7. The red
square in the bottom-left chart represents the duration of the rear-end crash event where the vehicle
controlled by the AIDA had overlapping bounding box with the lead vehicle.

ever, it generated substantially more high-ADE trajectories than the AIDA, most likely due
to the lack of representation of lead vehicle stochasticity.

The analyses in this section show that the decision making structure in the AIDA
enables modelers to reason about the training dataset’s effect on the learned model behavior.
To the best of our knowledge, this analysis is not possible with neural network BC models
using existing interpretability tools. We also showed how this understanding can be used to
edit parts of the model to achieve desired safety criteria.

4 GENERAL DISCUSSION
In this article, we introduced and evaluated a novel active inference model of driver car
following behavior (AIDA). The proposed AIDA significantly outperformed the IDM and neural
network BC models in offline predictions in the same-lane condition and outperformed the IDM
while performing similarly to BC models in the new-lane condition. Additionally, the AIDA
achieved significantly lower average deviation error than the IDM and BC-RNN in the online
control settings. However, the results showed that the AIDA was sensitive to initial training
conditions, which resulted in higher rates of lead vehicle collisions in the same-lane condition
compared to the IDM and BC-MLP. While BC had comparable or better performance than
the AIDA in action prediction and control, the AIDA is substantially more interpretable than
BC models. In contrast to approximate explanatory methods for BC neural networks, we
showed that the AIDA’s decision making process can be directly accessed by sampling and
visualizing the AIDA distributions. Further, we illustrated how the AIDA’s joint belief and
action trajectories could be used to understand model errors and correct them. This level of
understanding and diagnostic analysis is central to real world model inspection and verification
which are essential components of interpretability [8, 71].

These results partially confirm our hypothesis that balancing the relative strengths of
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rule-based and data-driven models, specifically using the active inference framework, results
in better predictions of driver behavior and more nuanced understanding of driver cognitive
dynamics during car following. In contrast to fixed rule-based models like the IDM, the
AIDA can incorporate additional "rules" in its state and policy priors while maintaining the
flexibility provided by its probabilistic representation. In contrast to purely data-driven models,
learning in the AIDA is constrained by its probability distributions and structure. This balance
preserves interpretability but still allows the model to be flexible to new data. Our findings
here suggest that this flexibilty comes at a cost of sensitivity to local optima in the training
process as evidenced by the collision rates across random seeds in online evaluations. Further,
our findings suggest that the AIDA, like other data-driven approaches, may be limited by the
scope of the data used in training (e.g., the crash limitation illustrated in Figure 8).

Our findings here extend prior applications of active inference theory in driving and
driver models and illustrate the value of rule-based modeling. Engström and colleagues [43]
presented active inference as a general theory of driving behavior with qualitative illustrations,
highlighting the need to separate pragmatic (risk) and epistemic (uncertainty) behavior and
relaxing the requirement of a strictly accurate environment model among human drivers.
Portions of this theory have been enacted in other driver models including [17, 31, 72].
The model in [17] includes the concept of balancing rule-based and data-driven models, but
the focus is primarily on physical concepts rather than psychological concepts in the AIDA.
The model presented by Pekkanen et al. [72] includes an attention mechanism driven by
the uncertainty of desired actions. The desired actions were computed using the IDM and
action uncertainty was obtained by propagating state uncertainty computed from a Bayesian
filter. The most notable differences between Pekkanen et al.’s model and the AIDA is that
their model assumes an accurate environment model and uses the IDM to generate behavior.
Our results show that an integrated perception-action system is important to the AIDA’s
trajectory-matching performance. However, we did not investigate epistemic behavior in the
model due to the simplicity of the car following task. The AIDA posed here also extends
our prior work [31] to model fine-grained longitudinal control, validate that model against
established benchmarks, and provide a more detailed interpretability analysis.

In addition to the contributions to driver modeling, this work extends research on hu-
man perception and control modeling. Our simultaneous estimation of human preference,
understanding of environment dynamics (i.e., transition probabilities), and perceptual uncer-
tainties (i.e., observation probabilities), and use of data from a complex driving environment
differentiate this work from [59, 73, 74]. Our findings here suggest that the AIDA can be
extended to complex environments successfully, although it is sensitive to training data and
model parameterization. Our use of a data-driven prior distribution, i.e.,(11), to prevent esti-
mating transition and observation parameters that are highly inconsistent with actual traffic
dynamics and reduce unidentifiability is also novel and differentiates this work from [57] and
[75]. Our visualizations of model preference and beliefs in Figure 6d and Figures 7-8 show
that the proposed data-driven prior leads to preference and dynamics estimation consistent
with the observed data and driver behavior theories.

Our work is limited by the following aspects. First, we have assumed three driver
observation modalities: distance headway, relative speed, and τ−1 with respect to the lead
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vehicle. However, human drivers are known to monitor other surrounding vehicles while
driving [6] and to have broader visual sampling [76]. Second, our parameterization of discrete
states has limited the expressivity of the model and prevented inductive biases such as the
smoothness of physical dynamics from being encoded. The limited dataset coverage, e.g., the
lack of crashes, prevented the learned dynamics from generalizing to some out-of-distribution
scenarios. The combination of model and data insufficiency led to the difficulty of recognizing
near-crash states and resulted in substantially more lead vehicle crashes than BC-MLP and
the IDM. Third, since the INTERACTION dataset was collected on highway, there likely exists
considerable heterogeneous driving behavior. This is shown in the uncertain and multi-modal
predictions in Figure 7 as the model had to explain drivers who took different actions upon
observing similar signals. While we anticipate incorporating additional observations and higher
state space dimension and application to alternative driving scenarios to be easy under the
current model formulation, doing so would impose additional requirements on dataset quality
and diversity. We thus recommend future work to consider general methods for incorporating
domain knowledge in more expressive generative models to combat dataset limitations and
modeling heterogeneity in naturalistic driver behavior. The results here suggest that these
extensions may alleviate many of the current model limitations.

5 CONCLUSIONS
We proposed a novel active inference model of driver behavior (AIDA). Using car following
data, we showed that the AIDA significantly outperformed the rule-based IDM on all metrics
and performed comparably with the data-driven neural network benchmarks. Using an inter-
pretability analysis, we showed that the structure of the AIDA provides superior transparency
of its input-output mechanics than the neural network models. Future work should focus on
training with data from more diverse driving environments and examining model extensions
that can capture heterogeneity across drivers.
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A APPENDIX
A.1 BC Implementation
For BC-MLP, we used a two-layer MLP network with ReLU activation and 40 hidden units
in each layer. For BC-RNN, we used a two-layer MLP network on top of a single-layer GRU
network with ReLU activation and 30 hidden units in each layer. The GRU layer only takes in
past observations but not past actions. We found that larger number of hidden units in the
BC-RNN model leads to significant overfitting. Both BC-MLP and BC-RNN receive 3 input
observations and output probability distributions over 15 discrete actions.

A.2 AIDA Implementation
The AIDA implementation follows value-iteration network and QMDP network [57, 75] to
enable end-to-end training in Pytorch [77]. We used a state dimension of 20, action dimension
of 15, and a maximum planning horizon of 30 steps (3 seconds). The Normalizing Flow
network consisted of a Gaussian mixture base distribution and a two-layer MLP network with
ReLU activation and 30 hidden units in each layer. For each mini-batch of observation-action
sequences, we first computed the log likelihood of the observations at all time steps and used
(4) to compute the belief sequences. We then computed the cumulative EFE in (8) and the
resulting optimal policy in (9) for each inferred belief using the QMDP approximation method
[56]. We evaluated dataset action likelihood using a weighted average of optimal policies over
different horizons:
π(a|b) = ∑

H

π(a|b,H)P (H) (14)

where P (H) is a truncated Poisson distribution up to the maximum planning horizon.
The QMDPmethod assumes the belief-action value can be approximated as a weighted-

average of the state-action value:
G∗(bt ,at) = ∑

st

bt(st)G∗(st ,at) (15)

where
G∗(st ,at) = EFE(st ,at) + logπ(at |bt) + ∑

st+1

P (st+1|st ,at)G∗(st+1) (16)

EFE(st ,at) =DKL(P (st+1|st ,at)||P̃ (st+1)) +EP (st+1|st ,at)[H(P (ot+1|st+1))] (17)
and ∀s ∈ S,G∗(st+H+1) = 0.

The combination of QMDP approximation and computing the observation entropy
in (17) using the Gaussian base distributions reduced the model’s ability to evaluate state
uncertainty. However, given the low state uncertainty shown in Figure 7 and Figure 8 (i.e.,
the nearly deterministic belief states in the lower right charts), these approximations do not
significantly impact the current results while providing the benefit of computational tractabil-
ity.

Another difference between our implementation and the common active inference
presentation is that we performed exact Bayesian state inference (i.e., (4)) instead of ap-
proximate variational inference (e.g., in [27]). This does not impact the current results since
both methods arrive at the same solution in the discrete state setting.
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A.3 AIDA-MPC Implementation
In the AIDA-MPC model, we replaced the learned discrete environment dynamics model with
a physics-based dynamics model with deterministic state transition and observation functions.
The physical-based model had the same three observation modalities: d,∆v ,τ−1. We defined
the state space as {d,∆v}. Assuming constant lead vehicle acceleration, the state transition
function is the following linear function:[
d ′

∆v ′

]
=

[
1 −δt
0 1

][
d

∆v

]
+

[
0

−δt

]
a (18)

The state to observation mapping for d and ∆v are identity functions. The observation τ−1

is computed as τ−1 ≈ ∆v/d .
Given this dynamics model, we used the Cross-Entropy Method (CEM [70]) model

predictive controller to generate actions treating the AIDA log preference probability over
observation as the reward function, i.e., R(o) = log∑s P (o|s)P̃ (s). At each time step, the
CEM controller is initialized with a Gaussian distribution over finite horizon action sequences.
It then iteratively refines the distribution by sampling N action sequences from the distribution,
simulating the action sequences forward using the dynamics model, refitting the Gaussian
distribution to the top K samples. Finally, it selects the first step of the mean action sequence
of the final Gaussian distribution as the action output. We used a CEM planning horizon
of 6 time steps (0.6 seconds), sampled N = 50 action sequences, selected the top K = 5

sequences, and refined the distribution for 20 iterations.

A.4 Parameter Counts
The number of parameters in each model is listed in Table 3.

TABLE 3: Parameter count of all models.

IDM BC-MLP BC-RNN AIDA
Count 6 4125 6465 7670

A.5 AIDA vs. AIDA-MPC
Figure 9a and 9b show AIDA and AIDA-MPC’s lead vehicle collision rate and ADE for each
tested trajectory, respectively, where each point corresponds to the result of a trajectory.
The shadows in Figure 9b represent the density of each model’s ADEs, where wider shadow
represents higher density.
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(a) (b)

FIGURE 9: Online same-lane evaluation results of AIDA and AIDA-MPC. Each point represents a
trajectory in the test set. The AIDA-MPC replaces the AIDA’s dynamics model with a physics-based
dynamics model and plans by treating the AIDA’s preference distribution as a reward function using
model-predictive control. (a) Lead vehicle collision rate of each trajectory. (b) ADE of each trajectory.
Wider shadows represent higher density of the ADE values.
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